Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Humanit Soc Sci Commun ; 9(1): 327, 2022.
Article in English | MEDLINE | ID: covidwho-2037046

ABSTRACT

The 2020 COVID-19 pandemic has greatly accelerated the adoption of online learning and teaching in many colleges and universities. Video, as a key integral part of online education, largely influences student learning experiences. Though many guidelines on designing educational videos have been reported, the quantitative data showing the impacts of video length on students' academic performance in a credit-bearing course is limited, particularly for an online-flipped college engineering course. The forced pandemic lockdown enables a suitable environment to address this research gap. In this paper, we present the first step to examine the impact of short videos on students' academic performance in such circumstances. Our results indicate that short videos can greatly improve student engagement by 24.7% in terms of video viewing time, and the final exam score by 9.0%, both compared to the long-video group. The quantitative Likert questionnaire also indicates students' preference for short videos over long videos. We believe this study has important implications for course design for future online-flipped engineering courses.

2.
Biosens Bioelectron ; 183: 113213, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1163433

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 µg/mL and ~1 µL, estimated total analyte consumption < 4 pg) within 21 min. Thus, a few potential inhibitors of S-protein-ACE2 binding were identified. This includes (2S,3aS,6aS)-1-((S)-N-((S)-1-Carboxy-3-phenylpropyl)alanyl)tetrahydrocyclopenta[b] pyrrole-2-carboxylic acid (ramiprilat) and (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-Carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid (perindoprilat) that reduced the binding affinity of S-protein to ACE2 by 72% and 67%; and SARS-CoV-2 in vitro infectivity to the ACE2-expressing human oral cavity squamous carcinoma cells (OEC-M1) by 36.4 and 20.1%, respectively, compared to the PBS control. These findings demonstrated the usefulness of the developed biosensing platform for the rapid screening of modulators for S-protein-ACE2 binding.


Subject(s)
Biosensing Techniques , COVID-19 , Dielectric Spectroscopy , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL